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Abstract—Monitoring systems play a crucial role in detecting 

anomalies across diverse real-world scenarios. This paper introduces 

a novel approach to anomaly detection in surveillance videos using 

deep learning techniques. Our method addresses the challenge of 

outlier annotation in training videos, which can be time-consuming 

and impractical. Instead, we propose a comprehensive multiple-

instance ranking loss function that learns outliers from weakly 

labeled training videos, where labels are assigned at the video level 

rather than the clip level. In our approach, normal and abnormal 

videos are treated as "bags," while video segments serve as 

"instances" in the multi-instance learning (MIL) paradigm. We 

develop a deep anomaly classification model that automatically 

detects high anomaly scores for anomalous video clips. Additionally, 

we incorporate sparsity and temporal smoothness constraints into the 

loss function to enhance outlier localization during training. 

Moreover, we explore spatiotemporal context modeling techniques to 

leverage both spatial and temporal information, capturing the 

dynamics of scenes over time. Through extensive experiments, we 

demonstrate the effectiveness of our approach in detecting anomalies 

in surveillance videos, achieving promising results in terms of 

accuracy and localization. Our proposed method offers a practical 

and efficient solution for anomaly detection in monitoring systems, 

alleviating the need for labor-intensive labeling processes. 

 

Keywords—Abnormal Event Detection, Social Surveillance, Deep 

Learning, Neural Networks. 

INTRODUCTION  

In the era of digital surveillance, the proliferation of video 

cameras in public and private spaces has produced an 

unprecedented amount of visual data. This increase highlights 

the critical need for efficient and accurate anomaly detection 

systems to ensure safety and security. Traditional monitoring 

systems rely heavily on manual monitoring, which is fraught 

with challenges such as human error and the impracticality of 

constant attention. In addition, the accurate labeling of 

anomalies in large datasets of monitoring material is both 

time-consuming and cumbersome, which is a major obstacle 

to the development of automatic anomaly detection systems. 

 To address these issues, this paper presents a novel 

approach to anomaly detection in surveillance videos using 

deep learning techniques. The core of our method is the use of 

a multi-case sequence loss feature, which innovatively learns 

to detect outliers from weakly labeled training videos. This 

approach avoids the need for precise frame-by-frame 

annotation. Instead, tags are defined at the video level and 

video clips are treated as "occurrences" in "bags", a method 

that greatly reduces the annotation burden. Our technique 

further differentiates itself by adding loss function sparsity and 

temporal smoothness constraints, which improves the model's 

ability to find anomalies effectively. Integrating 

spatiotemporal context modeling uses both spatial and 

temporal information, capturing the dynamic nature of scenes 

and facilitating the understanding of anomalies over time. 

Through rigorous testing, our method showed promising 

results, providing a significant improvement in both accuracy 

and localization of detected anomalies. 

This method's introduction signals a major breakthrough in 

surveillance technology by offering an effective and workable 

way to discover anomalies while reducing the difficulties 

associated with labor-intensive labeling procedures and 

manual monitoring. The development of automated solutions 

to improve security measures and operational efficiency in 

various contexts is crucial, given the growing demand for 

robust monitoring systems.This work heralds a significant 

advancement in surveillance technologies, offering a viable 

and efficient solution to the prevalent issues of manual 

monitoring and exhaustive annotation. It lays the groundwork 

for the next generation of monitoring systems, capable of 

enhancing security measures and operational efficiencies 

across various domains. While this study primarily 

concentrates on the technological aspects and implementation 

of our anomaly detection system, it also sets the stage for 

future exploration into the integration of natural language 

processing to generate contextual captions for identified 
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anomalies, promising to further the interpretability and utility 

of surveillance systems. 

LITERATURE SURVEY 

Automatic detection of human activity in surveillance videos 

is changing with the advancement of deep learning methods. 

Traditionally, the industry has relied on labor-intensive feature 

engineering techniques to extract relevant information from 

the raw video input. However, the advent of convolutional 

neural networks (CNN) has changed this approach, allowing 

direct processing of raw input data and greatly improving the 

efficiency and accuracy of feature recognition tasks. The paper 

"3D Convolutional Neural Networks for Human Action 

Detection" [1] makes an important contribution to this 

emerging landscape by introducing a new 3D CNN 

architecture specifically adapted for action detection tasks. 

Using 3D convolutions to capture both spatial and temporal 

dependencies of video sequences, the proposed model excels 

at extracting complex motion patterns that are crucial for 

viewing human activity. In particular, the model's ability to 

generate multiple data channels from input frames and 

integrate them into a comprehensive feature representation 

increases its effectiveness in handling complex real-world 

scenarios such as airport surveillance videos. In addition, the 

authors' innovative approach to validating model results and 

combining predictions from different models further improves 

the robustness and generalizability of the proposed 

framework. Through extensive testing and evaluation of the 

underlying methods, the paper shows a significant 

improvement in performance recognition performance, 

reinforcing its position as a major contributor to the field. The 

insights gathered from this paper provide a strong foundation 

for further research and innovation in deep learning-based 

activity detection systems, promising continued progress in 

real-world monitoring applications. 

In the field of abnormal event detection, significant advances 

have been made in surveillance video, which has prompted 

innovative methods to improve detection accuracy and 

efficiency. One such innovative approach is presented in the 

article "Detection and Localization of Abnormal Events 

through Coming Event Prediction" [2]. This paper introduces 

an ingenious technique called adversarial event prediction 

(AEP), which fundamentally changes the paradigm of 

anomalous event detection using an event prediction 

framework. Using samples of common events, AEP builds a 

predictive model that detects correlations between current and 

future events during training. The proposed adversarial 

learning mechanism further enhances the ability of AEP to 

learn discriminative representations to predict future events by 

limiting the learning of past event representations. Careful 

testing using various datasets such as UCSD-Ped, CUHK 

Avenue, Subway, and UCF-Crime has fully demonstrated the 

effectiveness of AEP in anomaly detection, showing its 

superiority over existing state-of-the-art methods [2].This 

important work highlights the potential of adversarial learning 

methods for anomaly event detection and provides a new 

perspective on the challenges of anomaly detection in 

surveillance video. Avoiding the need for additional 

information, such as optical flow or separate samples of 

abnormal events during training, AEP represents a significant 

departure from conventional abnormal event detection 

approaches. In addition, the paper's comprehensive 

performance analysis and comparative evaluations against 

existing methods confirm that the proposed mutual learning 

framework is effective in building the best models for normal 

event prediction and anomaly detection [2].Experiences 

gathered from the Anomalous Events article. Detection and 

Localization by Competing Event Prediction" pave the way 

for future research projects aimed at further improving and 

expanding the capabilities of adversarial learning methods for 

abnormal event detection. As the field evolves, the integration 

of innovative methods such as AEP promises to improve the 

reliability and trustworthiness of monitoring systems, 

contributing to the development of real-world applications that 

include safety, security and public infrastructure [2]. 

In addressing the critical challenge of weakly-supervised 

video anomaly detection, the paper titled "Contrastive 

Attention for Video Anomaly Detection"[3] introduces an 

innovative approach to enhance detection performance amidst 

the prevalent issue of data imbalance, where anomaly 

instances are vastly outnumbered by normal instances. 

Traditional methods, often framed within a multiple instance 

learning paradigm, tend to overlook this imbalance, leading to 

less effective anomaly localization. This work pioneers the 

development of a novel, lightweight anomaly detection model 

designed to leverage an abundance of normal video data, 

thereby refining the classifier's ability to discriminate between 

normal and anomalous events effectively.The core innovation 

of this study lies in its contrastive attention module, which not 

only enhances the prediction of anomalous segments but also 

ingeniously generates a "normal" feature representation from 

anomalous videos. This is achieved by encouraging the model 

to misclassify these converted features, thereby refining the 

detection of actual anomalies. Additionally, to counteract the 

selection of persistent normal segments that may be 

mistakenly identified as anomalies, the authors introduce an 

attention consistency loss. This loss function utilizes the 

classifier's high confidence in recognizing normal features to 

guide the attention mechanism towards more accurate 

anomaly detection.Through extensive experimentation across 

multiple large-scale datasets, including UCF-Crime, 

ShanghaiTech, and XD-Violence, the proposed model 

demonstrates a significant improvement in frame-level 

anomaly detection performance, as evidenced by its superior 

Area Under the Curve (AUC) metrics compared to existing 

state-of-the-art methods. The release of the model's codebase 

promises to facilitate further research and development within 

the field, encouraging the adoption and adaptation of 

contrastive attention mechanisms in video anomaly detection 

tasks. The insights and methodologies presented in 

"Contrastive Attention for Video Anomaly Detection"[3] mark 
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a significant advancement in the quest for more effective and 

efficient anomaly detection in video data, setting a new 

benchmark for future explorations in the domain.This 

contribution is especially relevant to the broader context of 

anomaly detection research, as it addresses a common yet 

challenging problem in video surveillance and monitoring 

systems. The innovative approach of employing contrastive 

attention to mitigate data imbalance and enhance anomaly 

detection capabilities provides a valuable reference point for 

subsequent studies aiming to refine and extend anomaly 

detection techniques. 

To address the challenge of weakly supervised video anomaly 

detection, "Weakly Supervised Video Anomaly Detection 

with Robust Temporal Feature Magnitude Learning" [4] 

proposes an improved approach that advances the level of 

multiple learning (MIL) in this field. . Conventional MIL 

frameworks often fail to distinguish rare abnormal clips from 

common normal cases in video, especially when the 

abnormalities are subtle and have little deviation from normal. 

This difficulty is compounded by general control of key 

temporal relationships between video clips, which can be the 

key to accurate outlier detection.The introduction of efficient 

temporal feature learning (RTFM) is an important step 

forward to mitigate these challenges. RTFM is designed to 

refine the detection process by using feature scope learning, 

which skillfully detects positive cases (abnormal events) and 

improves the robustness of the method against the bias of 

dominant negative cases found in abnormal videos. This new 

method not only addresses the inherent limitations of 

imbalance and the subtlety of anomalies, but also integrates 

extended circuits and self-aware mechanisms. These 

improvements are essential to capture both long- and short-

range temporal dependencies, enabling more accurate learning 

of feature sizes.The performance of RTFM is underlined by 

extensive experimental validation on four benchmark datasets: 

ShanghaiTech, UCF-Crime, XD-Vilence and UCSD-Peds. In 

particular, the use of the UCF crime data in the evaluation 

process closely aligns with our research objectives, further 

enhancing the relevance of the findings to our own research. 

The results are convincing, showing that the RTFM-enhanced 

MIL model not only outperforms several state-of-the-art 

methods by a significant margin but also significantly 

improves fine anomaly resolution and sampling efficiency. 

The contribution of the work is therefore twofold: it presents a 

theoretically sound method to improve anomaly detection in 

weakly observed video and provides empirical evidence of its 

superiority in handling complex anomaly detection tasks on 

various datasets. This study sets a new benchmark for the field 

and provides a strong foundation for future research aimed at 

improving the accuracy and reliability of anomaly detection 

systems. 

The paper "Real-World Anomaly Detection in Surveillance 

Video"[5] presents a comprehensive approach to anomaly 

learning using both normal and abnormal videos. One of the 

main challenges in anomaly detection is the tedious task, 

which can be very time-consuming, of marking abnormal parts 

or clips in training videos. To solve this problem, the authors 

propose a new methodology based on a deep multi-case 

classification framework, where training labels (abnormal or 

normal) are determined at the video level instead of the clip 

level. This innovative approach enables efficient learning of 

anomalies without precise labels, which greatly reduces the 

labeling burden.The proposed method processes normal and 

abnormal videos such as bags and video clips in a multi-level 

learning (MIL) framework. By automatically learning a deep 

anomaly classification model, the system can predict high 

deviations in abnormal videos, which facilitates effective 

anomaly detection. In addition, the introduction of sparsity 

and temporal smoothness constraints in the sequential loss 

function improves the model's ability to accurately locate 

anomalies during training, which further improves detection 

performance. In addition to proposing a new method, the 

paper presents an extensive dataset. . . contains 128 hours of 

real surveillance video. This dataset, consisting of 1,900 long 

and uncut videos, includes 13 realistic anomalies such as 

fights, traffic accidents, robberies and thefts, as well as 

common activities. This dataset has two main purposes: 

general anomaly detection, where anomalies are grouped and 

compared with normal activities, and anomaly detection, 

where each of the 13 anomalies is detected separately. 

Experimental results demonstrate the effectiveness of the 

proposed MIL method for anomaly detection and show 

significant improvements over the state-of-the-art. In addition, 

the authors provide an overview of the challenges arising from 

the material and identify opportunities for further research in 

this area. The availability of this complex dataset opens up 

opportunities to develop more efficient anomaly detection 

systems and underlines the importance of continuous 

innovation in this field. 

PROPOSED MODEL. 

Pretrained 3-D ConvNet 

The proposed anomaly detection framework incorporates a 

pretrained 3D Convolutional Neural Network (3D ConvNet) 

[1] as a foundational element. Specifically, the model 

integrates the C3D-v1.0 feature extractor, a variant of the 

Convolutional 3D (C3D) architecture, renowned for its 

efficacy in video analysis tasks. The C3D architecture is 

specified in the given Fig. 1. The C3D-v1.0 feature extractor 

comprises eight convolutional layers, five max-pooling layers, 

and three fully connected layers. Input to the model consists of 

a spatiotemporal cube of video frames, with dimensions (3, 

16, 112, 112), representing RGB channels, 16  frames and a 

spatial resolution of 112x112 pixels. The final layer output is 

tailored for anomaly detection, manifesting as a single unit 

with a sigmoid activation function, providing an anomaly 

score. The trained nature of the 3D ConvNet is advantageous, 

leveraging knowledge from a large-scale dataset, such as 

Sports-1M, to enhance the model's ability to discern normal 

and anomalous patterns. This pre-trained 3D ConvNet forms a 

critical component of the proposed anomaly detection model, 
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contributing to its robustness and effectiveness in surveillance 

system applications.    

 

Fig. 1: The  C3D Architecture used for feature extraction 

 

For ease of integration, the C3D-v1.0 feature extractor's 

architecture “Fig. 1”,  and pre-trained models can be accessed 

from the relevant repository, ensuring reproducibility and 

facilitating further research in the field. 

• Convolution Operation: Given input volume X and a 
filter W, the convolution operation produces an output 
volume O as follows:  

  𝑂(𝑖, 𝑗, 𝑘) = ∑ 𝑋 (𝑖 + 𝑎, 𝑗 + 𝑏, 𝑘 + 𝑐) • 𝑊(𝑎, 𝑏, 𝑐)𝑎,𝑏,𝑐  () 

• Max-Pooling Operation: The max-pooling operation 
selects the maximum value from a set of values in a 
pooling window.  

 𝑂(𝑖, 𝑗, 𝑘) = 𝑚𝑎𝑥𝑎,𝑏,𝑐𝑋(2𝑖 + 𝑎, 2𝑗 + 𝑏, 2𝑘 + 𝑐)     () 

• Fully Connected Layer: The fully connected layer 
computes the weighted sum of inputs with learnable 
weights and adds a bias term.    

               𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 • 𝑋 + 𝑏)                                  () 

The above mentioned equations 1,2 and 3 perform the 

convolution operations.The proposed model leverages the 

Convolutional 3D (C3D) architecture Fig. 1, for effective 

anomaly detection in surveillance systems. The C3D model is 

characterized by its eight convolutional layers, five max-

pooling layers, and three fully connected layers. The 

convolutional layers employ 3D filters, allowing simultaneous 

spatiotemporal feature extraction. Input to the model consists 

of a sequence of video frames forming a spatiotemporal cube 

with dimensions (3, 16, 112, 112), representing RGB 

channels, 16 frames, and a spatial resolution of 112x112 

pixels. The final output, tailored for anomaly detection, is a 

single unit with a sigmoid activation function, yielding an 

anomaly score. Training involves pre-training the model on 

normal behavior, followed by fine-tuning a dataset comprising 

both normal and anomalous examples. The loss function for 

training is binary cross-entropy.  

MULTIPLE INSTANCE LEARNING 

A well-defined optimization function is utilized in 

conventional supervised classification scenarios employing 

support vector machines (SVM), assuming the availability of 

labels for positive and negative examples. The classifier is 

trained to minimize a specific hinge loss, considering the 

feature representation of instances (images or video segments) 

denoted by φ(x), where x represents an image patch or a video 

segment, yi represents the label of each example, b is a bias, k 

is the total number of training examples, and w is the classifier 

to be learned. However, in supervised anomaly detection, 

obtaining accurate temporal annotations for video segments is 

challenging due to its time-consuming and labor-intensive 

nature. 

To address this challenge, Multiple Instance Learning (MIL) 

[2] is introduced, relaxing the requirement for precise 

temporal annotations. In MIL, only video-level labels 

indicating the presence or absence of anomalies in the entire 

video are needed. Positive videos, containing anomalies, are 

represented as positive bags (Ba), where different temporal 

segments serve as individual instances within the bag, while 

negative videos are denoted by negative bags (Bn), where 

instances in the bag do not contain anomalies. The objective is 

to optimize the classifier by considering the maximum scored 

instance in each bag, thus mitigating the need for detailed 

instance-level annotations. 

This paradigm shift allows for a more flexible approach in the 

context of anomaly detection, as MIL alleviates the necessity 

for precise temporal annotations and adapts to the inherent 

ambiguity in anomaly labeling within video sequences. The 

formulation considers bag-level labels, making the learning 

process less dependent on labor-intensive temporal annotation 

processes, which is particularly advantageous in real-world 

applications where obtaining accurate temporal information is 

challenging. 

 

Fig. 2: The MIL Framework Architecture 

In traditional supervised classification scenarios employing 

support vector machines (SVM), labels for both positive and 

negative instances are readily available, and the classifier is 

trained using the optimization function:, 

 𝑚𝑖𝑛𝑤
1

𝑘
∑ max(0,1 − 𝑦𝑖(𝜔 • 𝜙(𝑥) − 𝑏)) +

1

2
||𝜔||2𝑘

𝑖=1      () 

where 1 represents the hinge loss, yi is the label of each 

example, ϕ(x) denotes the feature representation of an image 

patch or video segment, b is a bias, k is the total number of 

training examples, and w is the classifier under training. 

Achieving a robust classifier in this context necessitates 
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precise annotations for both positive and negative examples. 

In the realm of supervised anomaly detection, the classifier 

requires temporal annotations for each segment in videos. 

However, the process of obtaining temporal annotations for 

videos is arduous and time-consuming. 

MIL alleviates the necessity for accurate temporal annotations, 

departing from the assumption of precise temporal 

information. In the MIL framework “Fig. 2”,, the precise 

temporal locations of anomalous events within videos remain 

unknown. Instead, only video-level labels that indicate the 

presence or absence of an anomaly across the entire video are 

required. A video containing anomalies is assigned a positive 

label, while a video devoid of anomalies is labeled as 

negative. Subsequently, a positive video is represented as a 

positive bag (Ba), wherein distinct temporal segments serve as 

individual instances within the bag, denoted as (p1, p2,...,pm), 

with 'm' being the count of instances in the bag. The 

assumption is made that at least one of these instances 

contains the anomaly. Correspondingly, a negative video is 

represented as a negative bag (Bn), where temporal segments 

within the bag constitute negative instances (n1, n2,...,nm). 

Importantly, in the negative bag, none of the instances contain 

an anomaly. Given the absence of precise information (i.e., 

instance-level labels) for positive instances, the optimization 

of the objective function involves considering the maximum 

scored instance within each bag: 

𝑚𝑖𝑛𝜔
1

𝑧
∑ max (0,1 − 𝑌Ɓ𝐽

(𝑚𝑎𝑥𝑖∈Ɓ𝑗
(𝜔. 𝜙(𝑥𝑖)) − 𝑏)) +𝑧

𝑗=1

1

2
||𝜔||2                                                                            (5) 

Where YBj denotes the bag-level label, z represents the total 

number of bags, and all other variables remain consistent with 

Equation 1. 

DEEP MIL RANKING MODEL 

Defining anomalous behavior poses a considerable challenge 

[5], given its subjective nature and substantial variation from 

person to person. The assignment of 1/0 labels to anomalies is 

non-trivial, and the scarcity of sufficient anomaly examples 

often leads to treating anomaly detection as a low-likelihood 

pattern detection problem instead of a classification one.In our 

proposed methodology, we reframe anomaly detection as a 

regression problem, aiming for anomalous video segments to 

exhibit higher anomaly scores than their normal counterparts. 

A direct approach involves employing a ranking loss that 

promotes elevated scores for anomalous video segments 

relative to normal segments, expressed as: 

         𝑓(𝛾𝑎) > 𝑓(𝛾𝑛 )                                                 (6) 

Here, Va and Vn denote anomalous and normal video 

segments, while f(Va) and f(Vn) signify the corresponding 

predicted anomaly scores within the range of 0 to 1, 

respectively. This ranking function is expected to perform 

effectively when segment-level annotations are available 

during the training phase. 

However, in the absence of annotations at the video segment 

level, the utilization of Equation 3 becomes impractical. 

Instead, we introduce a novel multiple-instance ranking 

objective function: 

 𝑚𝑎𝑥𝑖∈Ɓ𝑎
𝑓(𝛾𝑖

𝑎
) > 𝑚𝑎𝑥𝑖∈Ɓ𝑛

𝑓(𝛾𝑖
𝑛

)                  (7) 

where the maximum is computed over all video segments 

within each bag. Unlike enforcing ranking on every instance 

within the bag, our approach mandates ranking solely on the 

two instances with the highest anomaly scores in the positive 

and negative bags, respectively. The segment associated with 

the highest anomaly score in the positive bag is likely the true 

positive instance (anomalous segment), while the segment 

with the highest anomaly score in the negative bag closely 

resembles an anomalous segment but is, in fact, a normal 

instance. This challenging negative instance is viewed as a 

hard instance, capable of generating a false alarm in anomaly 

detection. Equation 4 is designed to drive positive instances 

and negative instances farther apart in terms of anomaly 

scores. Our hinge-loss formulation for the ranking loss is 

expressed as: 

𝑙(Ɓ𝑎, Ɓ𝑛) = max (0,1 − 𝑚𝑎𝑥𝑖∈Ɓ𝑎
𝑓(𝛾𝑖

𝑎
) + 𝑚𝑎𝑥𝑖∈Ɓ𝑛

𝑓(𝛾𝑖
𝑛

))                                                              

(8) 

This formulation aims to encourage a clear separation between 

positive and negative instances based on their anomaly scores, 

providing an effective strategy for anomaly detection in the 

absence of detailed segment-level annotations. 

However, a drawback of the aforementioned loss function is 

its oversight of the inherent temporal structure within 

anomalous videos. In real-world scenarios, anomalies often 

manifest for brief durations, leading to sparse scores for 

instances (segments) within the anomalous bag, signifying that 

only a few segments may contain the anomaly. Additionally, 

considering that a video comprises a sequence of segments, 

the anomaly score should exhibit smooth variations between 

these video segments. To address these considerations, we 

introduce constraints for both sparsity and smoothness on the 

instance scores. Consequently, the loss function is refined as 

follows: 

𝑙(Ɓ𝑎, Ɓ𝑛) = max (0,1 − 𝑚𝑎𝑥𝑖∈Ɓ𝑎
𝑓(𝛾𝑖

𝑎
) +

𝑚𝑎𝑥𝑖∈Ɓ𝑛
𝑓(𝛾𝑖

𝑛
)) + 𝜆1 ∑ (𝑓(𝛾𝑖

𝑎
) − 𝑓(𝛾𝑖+1

𝑎
))2 +𝑛−1

𝑖

𝜆2 ∑ 𝑓(𝛾𝑖
𝑎

)𝑛
𝑖                                                                (9) 

where λ 1denotes the temporal smoothness term, and λ 2 

represents the sparsity term. In this MIL ranking loss, the error 

is back-propagated from the maximum scored video segments 

in both positive and negative bags. Through training on an 

extensive set of positive and negative bags, the network is 

anticipated to learn a generalized model capable of predicting 

high scores for anomalous segments within positive bags 

(refer to Figure 2). Ultimately, our comprehensive objective 

function is defined as: 
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 𝐿(𝑊) = 𝑙(Ɓ𝑎, Ɓ𝑛) + 𝜆3||𝑊||2                          (10) 

where  W signifies the model weights. 

Formation of Bags: Each video undergoes subdivision into an 

equivalent number of non-overlapping temporal segments, and 

these segments serve as instances within bags. For each video 

segment, we extract 3D convolution features [1], a choice 

made for its computational efficiency and demonstrated 

effectiveness in capturing both appearance and motion 

dynamics crucial for video action recognition. 

ANOMALY DETECTION 

Anomalies, within the scope of surveillance systems, represent 

instances that deviate significantly from expected or "normal" 

behavior. In video analysis and security monitoring, detecting 

anomalies is crucial as these deviations often signal potential 

threats, safety hazards, or irregular activities. These anomalies 

can manifest in various forms, including suspicious 

movements, unexpected actions, or irregular patterns not 

conforming to the established norm. 

DATASET  

Recognizing the constraints inherent in existing datasets 

utilized for anomaly detection methodologies, a concerted 

effort was undertaken to curate a pioneering, extensive dataset 

meticulously crafted to serve as the litmus test for evaluating 

our novel approach. The dataset used in our paper was 

University of Central Florida (UCF) Crime video dataset. This 

meticulously assembled repository comprises a wealth of 

long-form, unaltered surveillance videos, each meticulously 

selected to encapsulate an exhaustive array of 13 distinctive 

real-world anomalies. Among these anomalies are occurrences 

of Abuse, Arrest, Arson, Assault, Accident, Burglary, 

Explosion, Fighting, Robbery, Shooting, Stealing, Shoplifting, 

and Vandalism, It also includes one more class which contains 

normal videos , meticulously chosen due to their significant 

ramifications on public safety, thereby ensuring a holistic 

representation of diverse anomalies commonly encountered 

within surveillance settings. 

Methodical Video Curation Process:  

The systematic curation process of this exceptional dataset 

commenced with an intensive training regimen for ten 

annotators, each equipped with varying levels of expertise in 

the realm of computer vision. Employing sophisticated text-

based search strategies on prominent platforms such as 

YouTube and LiveLeak, a meticulous search was conducted 

encompassing a myriad of search queries for each anomaly, 

spanning linguistic variations and cultural contexts. Stringent 

criteria were meticulously applied to filter out videos that did 

not meet the rigorous standard set forth. Instances of manual 

editing, prank videos, non-CCTV sourced content, news 

snippets, handheld camera captures, and compilations were 

meticulously sieved out, ensuring the exclusive retention of 

unadulterated surveillance footage displaying explicit 

anomalies. This rigorous curation methodology culminated in 

the procurement of a corpus of 950 unedited, authentic 

surveillance videos capturing explicit anomalies, paralleled by 

an equal count of 950 normative videos, aggregating to a total 

of 1900 videos within the dataset. 

Elaborate Annotation Procedures 

While the core of our anomaly detection methodology 

necessitated video-level labels for training, the efficiency 

evaluation demanded a more intricate approach. This involved 

the meticulous annotation of temporal extents delineating the 

onset and cessation of each anomalous event within the testing 

videos. Multiple annotators were tasked with meticulously 

scrutinizing and labelling these temporal nuances within the 

same videos, culminating in a composite amalgamation and 

averaging of annotations provided by divergent annotators. 

This exhaustive annotation endeavor spanned across several 

months, comprising intensive collaborative efforts towards 

dataset completeness and accuracy. 

Dichotomy of Training and Testing Set Distribution 

The resulting dataset underwent a meticulous partitioning, 

segregating into two distinct subsets: a 

 

Fig.   3 . Input video of the MIL Framework before detecting 

Anomaly 

 

Fig.   4 . Output of the MIL Framework after detecting 

Anomaly comprehensive training set comprising 800 

normative and 810 anomalous videos, juxtaposed against a 

rigorous testing set housing the remaining 150 normative and 

140 anomalous videos. Both subsets intricately encompassed 

the full spectrum of 13 anomalies, adorning various temporal 

instances within the video corpus. Notably, a subset of videos 

within the dataset showcased multitudinous anomalies, adding 

layers of complexity to the evaluation process.A meticulous 

analysis of video length distribution within the training set, 

frame counts, and anomaly prevalence within the testing 

videos is depicted through detailed visualization in Fig. 3, 4, 

and 5, respectively. 

EXPERIMENTS 

Methodological Implementation Specifics 

Within our anomaly detection framework, intricate visual 

features are extracted from the FC6 layer of the C3D network 

[36]. Preceding feature derivation, intricate manipulations 

involve resizing each video frame to dimensions of 240 × 320 

pixels, accompanied by a standardized frame rate of 30 fps. 

The meticulously computed C3D features for discrete 16-
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frame video clips undergo a stringent l2 normalization. 

Feature abstraction further entails computing the average of all 

16-frame clip features within a specific video segment, 

resulting in high-dimensional (4096D) feature representations. 

These intricate features are subsequently fed into a carefully 

constructed 3-layer FC neural network, replete with layers 

comprising 512, 32, and 1 unit(s) correspondingly. 

Intermediately situated layers are invigorated by ReLU 

activation, while the terminal layer employs Sigmoid 

activation. Optimization takes shape through the meticulous 

employment of the Adagrad optimizer, initialized with a 

learning rate of 0.001. Harmoniously intertwined within the 

network architecture is the judicious application of dropout 

regularization at a rate of 60% between FC layers. 

 

Fig. 5: The ROC Curve for the Anomaly detected video 

Thorough Evaluation and Critical Assessment 

Unveiling the dynamics behind model training unveils the 

intrinsic ability of our proposed approach to predict anomaly 

locations sans the crutch of segment-level annotations. The 

evolutionary trajectory of anomaly scores over the iterative 

training process unveils the network's remarkable acuity in 

accurately discerning between anomalous and normative 

segments. Moreover, the meticulous analysis of false alarm 

rates when scrutinizing normal videos underscores our 

approach's robustness, spotlighting a palpable diminution in 

false alarm rates vis-a-vis alternative methodologies. This 

substantiates the irrefutable necessity of training models with 

a judicious blend of both anomalous and normative video data 

for the fortification of robust anomaly detection systems.In the 

working code of our proposed model initially we have 

visualized the ROC – AUC curve for the anomaly detected 

video Fig. 5 . The Output video brings the red bounded box 

whenever the predicted anomalous score crosses 0.4 which 

was the fixed threshold. Thus visualization of the anomalous 

part was enhanced as shown in Fig. 4 which is the output 

video and Fig. 3 denotes the frames of the input video. 

 

Probing Anomalous Activity Recognition Endeavors 

The dossier extends beyond anomaly localization to embrace 

the challenging realm of anomalous activity recognition. 

Subdividing event-labeled video subsets, we venture into the 

domain of activity recognition experiments employing 

established methodologies like the C3D feature extractor 

which was used to extract spatio-temporal features in our 

paper.The outcomes, however, unveil a disheartening 

performance due to the multifarious challenges inherent in 

protracted untrimmed surveillance videos marked by low 

resolutions, pronounced intra-class variations, mutable 

viewpoints, shifting illumination, and ambient background 

noise. This narrative underscores the singular complexity and 

intrinsic intricacies defining our dataset in the domain of 

anomalous activity recognition. 
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